
CSC D70:
Compiler Optimization

Pointer Analysis

Prof. Gennady Pekhimenko
University of Toronto

Winter 2020

The content of this lecture is adapted from the lectures of
Todd Mowry, Greg Steffan, and Phillip Gibbons

Announcements

• Guest Lecture on March 23rd, by Kit Barton,
IBM

• Topic: TBA

2

• Basics
• Design Options
• Pointer Analysis Algorithms
• Pointer Analysis Using BDDs
• Probabilistic Pointer Analysis

3

Outline

Pros and Cons of Pointers
• Many procedural languages have pointers

– e.g., C or C++: int *p = &x;
• Pointers are powerful and convenient

– can build arbitrary data structures
• Pointers can also hinder compiler optimization

– hard to know where pointers are pointing
– must be conservative in their presence

• Has inspired much research
– analyses to decide where pointers are pointing
– many options and trade-offs
– open problem: a scalable accurate analysis

4

Pointer Analysis Basics: Aliases

• Two variables are aliases if:
– they reference the same memory location

• More useful:
– prove variables reference different location

5

int x,y;

int *p = &x;

int *q = &y;

int *r = p;

int **s = &q;

Alias Sets ?
{x, *p, *r}
{y, *q, **s}
{q, *s}

p and q point to different locs

The Pointer Alias Analysis Problem
• Decide for every pair of pointers at every program point:

– do they point to the same memory location?
• A difficult problem

– shown to be undecidable by Landi, 1992
• Correctness:

– report all pairs of pointers which do/may alias
• Ambiguous:

– two pointers which may or may not alias
• Accuracy/Precision:

– how few pairs of pointers are reported while remaining correct
– i.e., reduce ambiguity to improve accuracy

6

Many Uses of Pointer Analysis
• Basic compiler optimizations
– register allocation, CSE, dead code elimination, live

variables, instruction scheduling, loop invariant code
motion, redundant load/store elimination

• Parallelization
– instruction-level parallelism
– thread-level parallelism

• Behavioral synthesis
– automatically converting C-code into gates

• Error detection and program understanding
– memory leaks, wild pointers, security holes

7

Challenges for Pointer Analysis
• Complexity: huge in space and time

– compare every pointer with every other pointer
– at every program point
– potentially considering all program paths to that point

• Scalability vs. accuracy trade-off
– different analyses motivated for different purposes
– many useful algorithms (adds to confusion)

• Coding corner cases
– pointer arithmetic (*p++), casting, function pointers, long-jumps

• Whole program?
– most algorithms require the entire program
– library code? optimizing at link-time only?

8

Pointer Analysis: Design Options

• Representation
• Heap modeling
• Aggregate modeling
• Flow sensitivity
• Context sensitivity

9

Alias Representation

10

• Track pointer aliases
– <*a, b>, <*a, e>, <b, e>

<**a, c>, <**a, d>, …
– More precise, less efficient

• Track points-to info
– <a, b>, <b, c>, <b, d>,

<e, c>, <e, d>
– Less precise, more efficient
– Why?

a = &b;
b = &c;
b = &d;
e = b;

a b c

de

a

b

*a

e dc

*b

**
a

*e

Heap Modeling Options
• Heap merged

– i.e. “no heap modeling”
• Allocation site (any call to malloc/calloc)

– Consider each to be a unique location
– Doesn’t differentiate between multiple objects allocated by

the same allocation site
• Shape analysis

– Recognize linked lists, trees, DAGs, etc.

11

Aggregate Modeling Options
Arrays

12

…
Elements are treated
as individual locations

or

Treat entire array
as a single location

or

Treat entire structure as a
single location

…

Elements are treated
as individual locations
(“field sensitive”)

Structures

or

Treat first element
separate from others

…

What are the tradeoffs?

Flow Sensitivity Options
• Flow insensitive

– The order of statements doesn’t matter
• Result of analysis is the same regardless of statement order

– Uses a single global state to store results as they are computed
– Not very accurate

• Flow sensitive
– The order of the statements matter
– Need a control flow graph
– Must store results for each program point
– Improves accuracy

• Path sensitive
– Each path in a control flow graph is considered

13

Flow Sensitivity Example
(assuming allocation-site heap modeling)

14

S1: a = malloc(…);
S2: b = malloc(…);
S3: a = b;
S4: a = malloc(…);
S5: if(c)
 a = b;
S6: if(!c)
 a = malloc(…);
S7: … = *a;

Flow Insensitive
aS7 �

Flow Sensitive
aS7 �

Path Sensitive
aS7 �

{heapS1, heapS2, heapS4, heapS6}

(order doesn’t matter, union of all possibilities)

{heapS2, heapS4, heapS6}

(in-order, doesn’t know s5 & s6 are exclusive)

{heapS2, heapS6}

(in-order, knows s5 & s6 are exclusive)

int a, b, *p;
int main()
{
S1: f();
S2: p = &a;
S3: g();
}

Context Sensitivity Options
• Context insensitive/sensitive

– whether to consider different calling contexts
– e.g., what are the possibilities for p at S6?

15

int f()
{
S4: p = &b;
S5: g();
}

int g()
{
S6: … = *p;
}

Context Insensitive:

Context Sensitive:

pS6 => {a,b}

Called from S5:pS6 => {b}
Called from S3:pS6 => {a}

Pointer Alias Analysis Algorithms
References:
• “Points-to analysis in almost linear time”, Steensgaard, POPL 1996
• “Program Analysis and Specialization for the C Programming Language”,

Andersen, Technical Report, 1994
• “Context-sensitive interprocedural points-to analysis in the presence of

function pointers”, Emami et al., PLDI 1994
• “Pointer analysis: haven't we solved this problem yet?”, Hind, PASTE 2001
• “Which pointer analysis should I use?”, Hind et al., ISSTA 2000
• …

• “Introspective analysis: context-sensitivity, across the board”,
Smaragdakiset al., PLDI 2014

• “Sparse flow-sensitive pointer analysis for multithreaded programs”, Sui et
al., CGO 2016

• “Symbolic range analysis of pointers”, Paisanteet al., CGO 2016

16

Address Taken

• Basic, fast, ultra-conservative algorithm
– flow-insensitive, context-insensitive
– often used in production compilers

• Algorithm:
– Generate the set of all variables whose addresses are

assigned to another variable.
– Assume that any pointer can potentially point to any

variable in that set.
• Complexity: O(n) - linear in size of program
• Accuracy: very imprecise

17

Address Taken Example

pS5 =

18

T *p, *q, *r;

int main() {
S1: p = alloc(T);
 f();
 g(&p);
S4: p = alloc(T);
S5: … = *p;
}

void f() {
S6: q = alloc(T);
 g(&q);
S8: r = alloc(T);
}

g(T **fp) {
 T local;
 if(…)
s9: p = &local;
}

{heap_S1, p, heap_S4, heap_S6, q, heap_S8, local}

Andersen’s Algorithm
• Flow-insensitive, context-insensitive, iterative
• Representation:

– one points-to graph for entire program
– each node represents exactly one location

• For each statement, build the points-to graph:

• Iterate until graph no longer changes
• Worst case complexity: O(n3), where n = program size

19

y = &x y points-to x

y = x if x points-to w
then y points-to w

*y = x if y points-to z and x points-to w
then z points-to w

y = *x if x points-to z and z points-to w
then y points-to w

Andersen Example

pS5 =

20

T *p, *q, *r;

int main() {
S1: p = alloc(T);
 f();
 g(&p);
S4: p = alloc(T);
S5: … = *p;
}

void f() {
S6: q = alloc(T);
 g(&q);
S8: r = alloc(T);
}

g(T **fp) {
 T local;
 if(…)
s9: p = &local;
}

{heap_S1,
 heap_S4,
 local}

Steensgaard’s Algorithm

• Flow-insensitive, context-insensitive
• Representation:
– a compact points-to graph for entire program

• each node can represent multiple locations
• but can only point to one other node

– i.e. every node has a fan-out of 1 or 0

• union-find data structure implements fan-out
– “unioning” while finding eliminates need to iterate

• Worst case complexity: O(n)
• Precision: less precise than Andersen’s

21

Steensgaard Example

pS5 =

22

T *p, *q, *r;

int main() {
S1: p = alloc(T);
 f();
 g(&p);
S4: p = alloc(T);
S5: … = *p;
}

void f() {
S6: q = alloc(T);
 g(&q);
S8: r = alloc(T);
}

g(T **fp) {
 T local;
 if(…)
s9: p = &local;
}

{heap_S1,
 heap_S4,
 heap_S6,
 local}

Example with Flow Sensitivity

pS5 =

23

T *p, *q, *r;

int main() {
S1: p = alloc(T);
 f();
 g(&p);
S4: p = alloc(T);
S5: … = *p;
}

void f() {
S6: q = alloc(T);
 g(&q);
S8: r = alloc(T);
}

g(T **fp) {
 T local;
 if(…)
s9: p = &local;
}

pS9 ={heap_S4} {local, heap_s1}

Pointer Analysis Using BDDs:
Binary Decision Diagrams
References:
• “Cloning-based context-sensitive pointer alias

analysis using binary decision diagrams”,
Whaley and Lam, PLDI 2004

• “Symbolic pointer analysis revisited”, Zhu and
Calman, PDLI 2004

• “Points-to analysis using BDDs”, Berndl et al,
PDLI 2003

24

Binary Decision Diagram (BDD)

25

Binary Decision Tree Truth Table BDD

BDD-Based Pointer Analysis

• Use a BDD to represent transfer functions
– encode procedure as a function of its calling context
– compact and efficient representation

• Perform context-sensitive, inter-procedural
analysis
– similar to dataflow analysis
– but across the procedure call graph

• Gives accurate results
– and scales up to large programs

26

Probabilistic Pointer Analysis
References:
• “A Probabilistic Pointer Analysis for Speculative

Optimizations”, DaSilva and Steffan, ASPLOS 2006
• “Compiler support for speculative multithreading

architecture with probabilistic points-to analysis”, Shen et
al., PPoPP 2003

• “Speculative Alias Analysis for Executable Code”, Fernandez
and Espasa, PACT 2002

• “A General Compiler Framework for Speculative
Optimizations Using Data Speculative Code Motion”, Dai et
al., CGO 2005

• “Speculative register promotion using Advanced Load
Address Table (ALAT)”, Lin et al., CGO 2003

27

Pointer Analysis: Yes, No, & Maybe

• Do pointers a and b point to the same location?
– Repeat for every pair of pointers at every program point

• How can we optimize the “maybe” cases?

28

*a = ~
 ~ = *b

Definitely Not

Definitely

Maybe

Pointer
Analysis

optimize

*a = ~ ~ = *b

Let’s Speculate
• Implement a potentially unsafe optimization

– Verify and Recover if necessary

29

int *a, x;
…
while(…)
{
 x = *a;
 …
} a is probably

loop invariant

int *a, x, tmp;
…
tmp = *a;
while(…)
{
 x = tmp;
 …
}
<verify, recover?>

Data Speculative Optimizations
• EPIC Instruction sets

– Support for speculative load/store instructions (e.g., Itanium)
• Speculative compiler optimizations

– Dead store elimination, redundancy elimination, copy
propagation, strength reduction, register promotion

• Thread-level speculation (TLS)
– Hardware and compiler support for speculative parallel threads

• Transactional programming
– Hardware and software support for speculative parallel

transactions

Heavy reliance on detailed profile feedback

30

Can We Quantify “Maybe”?
• Estimate the potential benefit for speculating:

Ideally “maybe” should be a probability.

31

Speculate?

Expected
speedup
(if successful)

Recovery
penalty

(if unsuccessful)

Overhead
for verify

Maybe

Probability
of success

Definitely Not

Definitely

Maybe

Conventional Pointer Analysis

• Do pointers a and b point to the same location?
– Repeat for every pair of pointers at every program

point

32

*a = ~
 ~ = *b

p = 0.0

p = 1.0

0.0 < p < 1.0

Pointer
Analysis

optimize

*a = ~ ~ = *b

Definitely Not

Definitely

Maybe

Probabilistic Pointer Analysis

• Potential advantage of Probabilistic Pointer
Analysis:
– it doesn’t need to be safe

33

*a = ~
 ~ = *b

p = 0.0

p = 1.0

0.0 < p < 1.0

Probabilistic
Pointer
Analysis

optimize

*a = ~ ~ = *b

PPA Research Objectives
• Accurate points-to probability information

– at every static pointer dereference
• Scalable analysis

– Goal: entire SPEC integer benchmark suite
• Understand scalability/accuracy tradeoff

– through flexible static memory model

Improve our understanding of programs

34

Algorithm Design Choices
Fixed:
• Bottom Up / Top Down Approach
• Linear transfer functions (for scalability)
• One-level context and flow sensitive

Flexible:
• Edge profiling (or static prediction)
• Safe (or unsafe)
• Field sensitive (or field insensitive)

35

36

Traditional Points-To Graph
int x, y, z, *b = &x;
void foo(int *a) {

 if(…)
 b = &y;

 if(…)
 a = &z;
 else(…)
 a = b;

 while(…) {
 x = *a;
 …
 }
}

y UN
D

a

z

b

x

= pointer

= pointed at

Definitely

Maybe

=

=

Results are inconclusive

37

Probabilistic Points-To Graph
int x, y, z, *b = &x;
void foo(int *a) {

 if(…)
 b = &y;

 if(…)
 a = &z;
 else
 a = b;

 while(…) {
 x = *a;
 …
 }
}

y UN
D

a

z

b

x

�0.1 taken(edge profile)

�0.2 taken(edge profile)

= pointer

= pointed at

p = 1.0

0.0<p< 1.0

=

=
p

0.10.9
0.72

0.08

0.2

Results provide more information

Probabilistic Pointer Analysis Results
Summary
• Matrix-based, transfer function approach
– SUIF/Matlab implementation

• Scales to the SPECint 95/2000 benchmarks
– One-level context and flow sensitive

• As accurate as the most precise algorithms
• Interesting result:
– ~90% of pointers tend to point to only one thing

38

Pointer Analysis Summary
• Pointers are hard to understand at compile time!

– accurate analyses are large and complex
• Many different options:

– Representation, heap modeling, aggregate modeling, flow
sensitivity, context sensitivity

• Many algorithms:
– Address-taken, Steensgarde, Andersen, Emami
– BDD-based, probabilistic

• Many trade-offs:
– space, time, accuracy, safety

• Choose the right type of analysis given how the
information will be used

39

CSC D70:
Compiler Optimization

Memory Optimizations (Intro)

Prof. Gennady Pekhimenko
University of Toronto

Winter 2020

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

Caches: A Quick Review
• How do they work?

• Why do we care about them?

• What are typical configurations today?

• What are some important cache parameters that
will affect performance?

Optimizing Cache Performance

• Things to enhance:
– temporal locality
– spatial locality

• Things to minimize:
– conflicts (i.e. bad replacement decisions)

What can the compiler do to help?

Two Things We Can Manipulate

• Time:
– When is an object accessed?

• Space:
– Where does an object exist in the address space?

How do we exploit these two levers?

Time: Reordering Computation

• What makes it difficult to know when an object is accessed?

• How can we predict a better time to access it?
– What information is needed?

• How do we know that this would be safe?

Space: Changing Data Layout

• What do we know about an object’s location?
– scalars, structures, pointer-based data structures, arrays,

code, etc.

• How can we tell what a better layout would be?
– how many can we create?

• To what extent can we safely alter the layout?

Types of Objects to Consider

• Scalars

• Structures & Pointers

• Arrays

47

Scalars

• Locals

• Globals

• Procedure arguments

• Is cache performance a concern here?
• If so, what can be done?

int x;
double y;
foo(int a){
 int i;
 …
 x = a*i;
 …
}

Structures and Pointers

• What can we do here?
– within a node
– across nodes

• What limits the compiler’s ability to optimize here?

struct {
int count;
double velocity;
double inertia;
struct node *neighbors[N];

} node;

Arrays

• usually accessed within loops nests
– makes it easy to understand “time”

• what we know about array element addresses:
– start of array?
– relative position within array

double A[N][N], B[N][N];
…
for i = 0 to N-1

for j = 0 to N-1
A[i][j] = B[j][i];

Visitation Order in Iteration Space

• Note: iteration space ≠ data space

for i = 0 to N-1
for j = 0 to N-1

A[i][j] =
B[j][i];

i

j

When Do Cache Misses Occur?
for i = 0 to N-1

for j = 0 to N-1
A[i][j] =

B[j][i];

i

j

i

j

A B

When Do Cache Misses Occur?

for i = 0 to N-1
for j = 0 to N-1

A[i+j][0] = i*j;

i

j

Optimizing the Cache Behavior of
Array Accesses
• We need to answer the following questions:

– when do cache misses occur?

• use “locality analysis”
– can we change the order of the iterations (or possibly data layout) to

produce better behavior?

• evaluate the cost of various alternatives
– does the new ordering/layout still produce correct results?

• use “dependence analysis”

Examples of Loop Transformations
• Loop Interchange
• Cache Blocking
• Skewing
• Loop Reversal
• …

CSC D70:
Compiler Optimization

Pointer Analysis &
Memory Optimizations (Intro)

Prof. Gennady Pekhimenko
University of Toronto

Winter 2020

The content of this lecture is adapted from the lectures of
Todd Mowry and Phillip Gibbons

